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Model for interacting instabilities and texture dynamics of patterns
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~Received 13 December 2000; published 8 June 2001!

A simple model to study interacting instabilities and textures of resulting patterns for thermal convection is
presented. The model, consisting of a twelve-mode dynamical system derived for periodic square lattice,
describes convective patterns in the form of stripes and patchwork quilt. The interaction between stationary
zigzag stripes and standing patchwork quilt pattern leads to spatiotemporal patterns oftwistedpatchwork quilt.
Textures of these patterns, which depend strongly on Prandtl number, are investigated numerically using the
model. The model also shows an interesting possibility of a multicritical point, where stability boundaries of
four different structures meet.

DOI: 10.1103/PhysRevE.64.016301 PACS number~s!: 47.20.2k
lly
at
c

-
ic
pl

te
r

m
il
b

a
ui

in
m

n
c
a
d
ir

ion
e
u
ls

f

es

in

en-

n
r

.

rkin
er-

ou-
on-
the
ibe

tical
Pattern-forming instabilities in systems driven externa
far from equilibrium are currently receiving considerable
tention @1–11#. They appear in many physical systems su
as fluids@3–8#, granular materials@9#, cardiac tissues@10#,
reaction-diffusion systems@11#, traffic flow @12#, dendritic
growth @13#, and nonlinear optics@14#. Spatiotemporal struc
tures arising due to interacting instabilities and the dynam
of their textures are understood theoretically either by am
tude equations@1,2# or dynamical systems@15#. In the ab-
sence of a clear separation of time scales, dynamical sys
are preferred for investigating pattern dynamics. Robe
et al. @16#, using a dynamical system with hexagonal sy
metry, showed the possibility of a standing patchwork qu
pattern due to interacting oscillatory instabilities in the pro
lem of thermal convection in adouble-diffusivesystem@17#.
They found mirror-symmetric andtwisted patchwork quilt
patterns on hexagonal lattice. Patterns having both open
closed streamlines/isotherms are called patchwork q
Twistedpatchwork quilt does not have mirror symmetry.

In this paper, we present a simple model of interact
instabilities in the form of a twelve-mode dynamical syste
derived from Boussinesq equations for thermal convectio
ordinary fluids. Using the model, we show that the intera
tion between zigzag pattern and standing squares can
lead totwistedpatchwork quilt pattern. Our model is base
on square lattice rather than hexagonal lattice, and it requ
only two bifurcation parameters: the Prandtl numbers and
reduced Rayleigh numberr. The possibility of patchwork
quilt patterns on square lattice due to interaction of a stat
ary and an oscillatory instabilities is qualitatively new. W
then investigate numerically textures of spatiotemporal str
tures arising due to interacting patterns. The model a
shows an interesting possibility of a multicritical point (s
51.5760.01,r 511.260.05), where stability zones o
straight stripes, zigzag stripes, standingsymmetricpatchwork
quilt, and standingtwistedpatchwork quilt meet.

We consider an extended horizontal layer of Boussin
fluid of thicknessd, kinematic viscosityn, thermal diffusi-
tivity k confined between two perfectly conductingstress-
free horizontal boundaries, and heated from below. Mak
all length scales dimensionless by the fluid thicknessd, time
by the thermal diffusive time scaled2/k, and the temperature
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by the temperature differenceDT between the two bounding
surfaces, the relevant hydrodynamical equations in dim
sionless form read

] t¹
2v35s¹4v31s¹H

2 u2e3•@“3$~v•“ !v2~v•“ !v%#,
~1!

] tv35s¹2v31@~v•“ !v32~v•“ !v3#, ~2!

] tu5¹2u1Rv32v•“u, ~3!

wherev[(v1 ,v2 ,v3), v5“3v [ (v1 ,v2 ,v3), andu are,
respectively, the velocity, the vorticity, and the deviatio
from the conductive temperature profile. Prandtl numbes
and Rayleigh numberR are defined, respectively, ass
5n/k andR5a(DT)gd3/nk, wherea is the coefficient of
thermal expansion of the fluid,g the acceleration due to
gravity. The unit vectore3 is directed vertically upward. The
symbol ¹H

2 (5¹111¹22) stands for horizontal Laplacian
The boundary conditions at the idealizedstress-freeconduct-
ing flat surfaces implyu5v35]33v35]3v350 at x350,1.

We construct a dynamical system by a standard Gale
procedure. The spatial dependence of vertical velocity, v
tical vorticity, and temperature field are expanded in a F
rier series, which is compatible with the stress-free flat c
ducting boundaries and periodic square lattice in
horizontal plane. We include minimum modes to descr
straight stripes~S!, zigzag stripes~ZZ!, square patterns~SQ!,
and nonlinear interaction among these patterns. The ver
velocity v3, vertical vorticityw3, andu then may be written
as

v35@W101~ t !coskcx11W011~ t !coskcx2#sinpx3

1@W112~ t !coskcx1 coskcx2

1W1̄1̄2 sinkcx1 sinkcx2#sin 2px3 , ~4!

v35@z101~ t !coskcx11z011~ t !coskcx2#cospx3

1z110~ t !coskcx1 coskcx2 , ~5!
©2001 The American Physical Society01-1
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u5@Q101~ t !coskcx11Q011~ t !coskcx2#sinpx3

1Q002~ t !sin 2px31@Q112~ t !coskcx1 coskcx2

1Q 1̄1̄2 sinkcx1 sinkcx2#sin 2px3 , ~6!

wherekc5p/A2. The horizontal components of velocity an
vorticity fields are computed by the solenoidal characters
these two fields~i.e., ¹•v5¹•v50). We now project the
hydrodynamical Eqs.~1–3! onto these twelve modes to g
the following dynamical system

tẊ5s~2X1Y!1S X2

X1
DS11S G2

2G1
DS22S G2

G1
DV, ~7!

tẎ52Y1~r 2Z!X1S X2

X1
DT11S G2

2G1
DT2 , ~8!

tĠ52sG1
2

3 S X2

2X1
DS21S G2

G1
DS1 , ~9!

tṠ52
10

3
sS1

3

5
sT2S 3

10
~X1X21G1G2!

3

40
~X1G22X2G1!

D , ~10!

tṪ52
10

3
T1rS2S 1

4
~X1Y21X2Y1!

3

8
~Y1G22Y2G1!

D , ~11!

tV̇52
2

3
sV1~X1G21X2G1!, ~12!

tŻ52
8

3
Z1~X1Y11X2Y2!, ~13!

where the critical modes

X[~X1 , X2!T5~p/A2qc
2!~W101, W011!

T,

Y[~Y1 , Y2!T5~pkc
2/A2qc

6!~Q101, Q011!
T,

and

G[~G1 , G2!T5~p/A2qc
3!~z101, z011!

T

are proportional to vertical velocity, temperature, a
vertical vorticity, respectively. The nonlinear modes a
redefined as S[(S1 , S2)T5(1/4qc)(p/qcW112, W1̄1̄2)T,
V5(p/2qc

3)z110, T [ (T1 , T2)T 5 (kc
2/4qc

5)(p/qcQ112,
Q 1̄1̄2)T, and Z52(pkc

2/qc
6)Q002. The constants of the

model areqc
25p21kc

2 and t5qc
22 . Prandtl numbers and

the reduced Rayleigh numberr 5R/Rc(5Rkc
2/qc

6) are two
bifurcation parameters of our model. The superscriptT de-
notes the transpose of a matrix.
01630
f

The model~7 – 13! describes various stationary, as we
as oscillating patterns, on square lattice. The set of stra
stripes ~S! parallel to thex1(2) axis is obtained by setting
X2(1)5Y2(1)5G15G25S15S25T15T25V50 in the
model. The stationary straight stripes given byX1(2)5Y1(2)

5A8(r 21)/3, and Z5r 21 appear just above onset (r
51) of convective instability. The stationary zigzag~ZZ!
patterns, which appear at secondary instability fors,1.57,
are obtained by takingX2(1)5Y2(1)5G1(2)5S1(2)5T1(2)
50 in the model. The standing asymmetric squares@18# is

FIG. 1. Stability boundaries of various convective structures
parameter space computed by the model. Stability zones of stra
stripes~S!, zigzag stripes~ZZ!, patchwork quilt~PQ!, and twisted
patchwork quilt ~TPQ! meet at a multicritical point (s51.57
60.01,r 511.260.05). The model shows chaotic behavior at mu
higher values ofr.

FIG. 2. Texture oftwistedpatchwork quilt patterns. Isotherm
for s51.57,r 511.4,z50.25 at ~a! t50, ~b! t5T/4, ~c! t5T/2,
and ~d! t53T/4.
1-2
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retrieved by settingG15G25S25T25V50 in the model.
The asymmetric squares, which form mirror-symmet
patchwork quilt pattern, appear at the onset of second
instability via forward Hopf bifurcation fors.1.57. The
twelve-mode model describes interaction among these s
tures. We integrate numerically the full model to investiga
dynamics of the resulting convective structures. We do it
a fixeds by varyingr in small steps. For each value ofr, the
integration is done starting with randomly chosen initial co
ditions for long enough to reach the final state. Prandtl nu
ber s is then varied in small steps and whole procedure
repeated for eachs. The final states for variouss and r
reported here are independent of the choice of initial con
tions.

Figure 1 shows the stability boundaries of various patte
in parameter space (s2r plane! computed from the model
A transition from straight stripes~S! to zigzag stripes~ZZ!
occur asr is raised above its value at the lower-stabil
boundary fors,1.57. The threshold value ofr for such
transition strongly depends ons. The transition from straigh
stripe to standing patchwork quilt~PQ! via forward Hopf
bifurcation occurs whenr is raised above its value at th
lower boundary fors.1.57. The patchwork quilt patter
shows mirror and inversion symmetries but not fourfo
symmetry. A shadowgraph of this pattern appears as st
ing asymmetric squares@18#. The stability boundary of this
Hopf bifurcation shows weak dependence ons.

FIG. 3. Temporal sequence of textures of structures due to c
petition of standing mirror-symmetric andtwisted patchwork quilt
patterns fors50.6, r 59.0, z50.25 at~a! t50, ~b! t5T/8, ~c! t
5T/4, ~d! t53T/8, ~e! t5T/2, and~f! t55T/8, ~g! t53T/4, ~h! t
57T/8, ~i! t5T.
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All of the straight stripes~S!, zigzag stripes~ZZ!, and
standing patchwork quilt~PQ! are unstable in the region o
parameter space marked as twisted patwork quilt~TPQ!. We
find all modes of the model active, ifs and r are chosen
from this zone, and interacting with each other. We obse
spatiotemporal patterns without mirror symmetry in this p
of parameter space. Figure 2 shows thetwisted patchwork
quilt pattern slightly above the multicritical point. These pa
terns have lost the mirror symmetry. This happens due
competition of asymmetric squares, which are mirror sy
metric patchwork quilt pattern, with zigzag patterns. T
generation of vertical vorticity breaks the mirror symmet
of patchwork quilt pattern~PQ! ass and r are chosen from
the zone marked TPQ in parameter space~see Fig. 1!. An
increase in the intensity of vertical vorticity makes the p
tern more twisted. The set of four figures clearly depicts
spatiotemporal behavior of the texture of thetwistedpatch-
work quilt patterns. The texture depends strongly ons and
weakly onr. Figure 3 shows competition of two sets, mut
ally perpendicular to each other, competing with each oth
The picture fors50.6 andr 59.0 shows periodically vary-
ing textures arising due to competing instabilities for o
period of oscillation. The model also shows quasiperio
patterns fors50.835 andr 511.4 ~see Fig. 4!. This chaotic
evolution of patterns occurs with further increase inr8.

In this paper, we have presented a simple model of in
acting instabilities. We have shown that the interaction
tween a stationary instability and an oscillatory instabil
may lead to many interesting patterns includingtwisted
patchwork quilt on square lattice. The texture of the patte
due to competing instabilities may be modeled with an
propriate dynamical system. The model is also useful in c
turing the mechanism of the emergence of various instab
ties and resulting patterns.

We acknowledge support from DST, India through
grants under the project ‘‘Pattern-forming Instabilities a
Interface Waves.’’ N.G. of IIT, Bombay, acknowledges pa
tial support from PAMU, ISI, Calcutta.
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FIG. 4. Quasiperiodic patterns fors50.835,r 511.4.
1-3



ce

o

ys

ALAKA DAS, KRISHNA KUMAR, AND NARAYANASAMY GANESH PHYSICAL REVIEW E 64 016301
@1# P. Manneville,Dissipative Structures and Weak Turbulen
~Academic Press, San Diego, 1990!.

@2# M.C. Cross and P.C. Hohenberg, Rev. Mod. Phys.65, 851
~1993!.

@3# F.H. Busse, Rep. Prog. Phys.41, 1929~1978!.
@4# G. Ahlers, Physica D51, 421 ~1991!.
@5# S. Fauve, K. Kumar, C. Laroche, D. Beysens, and Y. Garrab

Phys. Rev. Lett.68, 3160~1992!.
@6# R.E. Ecke, Y. Hu, R. Mainieri, and G. Ahlers, Science269,

1704 ~1995!.
@7# M. Assenheimer and V. Steinberg, Phys. Rev. Lett.76, 756

~1996!.
@8# B.B. Plapp, D.A. Egolf, E. Bodenschatz, and W. Pesh, Ph

Rev. Lett.81, 5334~1998!.
01630
s,

.

@9# P.B. Umbanhowar, F. Melo, and H.L. Swinney, Nature~Lon-
don! 382, 793 ~1996!.

@10# A.T. Winfree, Science266, 1003~1994!.
@11# Q. Ouyang and J.F. Flesseles, Nature~London! 379, 143

~1996!.
@12# M. Mitarai and H. Nakanishi, Phys. Rev. Lett.85, 1766

~2000!.
@13# E.A. Brener and V.I. Mel’nikov, Adv. Phys.40, 53 ~1991!.
@14# J.V. Moloney and A.C. Newell, Physica D44, 1 ~1990!.
@15# E.N. Lorenz, J. Atmos. Sci.20, 130 ~1963!.
@16# M. Roberts, J.W. Swift, and D.H. Wagner, Contemp. Math.56,

283 ~1985!.
@17# J.S. Turner, Annu. Rev. Fluid Mech.6, 37 ~1974!.
@18# A. Das, U. Ghosal, and K. Kumar, Phys. Rev. E62, R3051

~2000!.
1-4


