PHYSICAL REVIEW E, VOLUME 64, 016301
Model for interacting instabilities and texture dynamics of patterns
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A simple model to study interacting instabilities and textures of resulting patterns for thermal convection is
presented. The model, consisting of a twelve-mode dynamical system derived for periodic square lattice,
describes convective patterns in the form of stripes and patchwork quilt. The interaction between stationary
zigzag stripes and standing patchwork quilt pattern leads to spatiotemporal pattemstedpatchwork quilt.
Textures of these patterns, which depend strongly on Prandtl number, are investigated numerically using the
model. The model also shows an interesting possibility of a multicritical point, where stability boundaries of
four different structures meet.
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Pattern-forming instabilities in systems driven externallyby the temperature differenceT between the two bounding
far from equilibrium are currently receiving considerable at-surfaces, the relevant hydrodynamical equations in dimen-
tention[1-11]. They appear in many physical systems suchsionless form read
as fluids[3-8], granular material$9], cardiac tissue$10],
reaction-diffusion sy:.stemsll],. traffic flow [12], dendritic ﬁtV2v3=aV4v3+aVﬁe—eg-[Vx{(w-V)v—(v-V)w}],
growth[13], and nonlinear optickl4]. Spatiotemporal struc- (1)
tures arising due to interacting instabilities and the dynamics
of their textures are understood theoretically either by ampli-
tude equation$1,2] or dynamical systemgl5]. In the ab-
sence of a clear separation of time scales, dynamical systems
are preferred for investigating pattern dynamics. Roberts 3,0=V20+Rv3—V-V4, (3)
et al. [16], using a dynamical system with hexagonal sym-
metry, showed the possibility of a standing patchwork quilt
pattern due to interacting oscillatory instabilities in the prob-

lem of thermal convection in double-diffusivesystem[17]. ., the conductive temperature profile. Prandtl numier
They found mlrror-symmgtrlc antlvisted paFchwork quilt and Rayleigh numbeR are defined, respectively, as
patterns on hexagonal lattice. Patterns having both open and ;. andRr= «(AT)gd¥ vk, wherea is the coefficient of

chsed streamlines/isfotherms are caIIe.d patchwork quilermal expansion of the fluidy the acceleration due to
Twistedpatchwork quilt does not have mirror symmetry. — gravity. The unit vectoe, is directed vertically upward. The

In this paper, we present a simple model of interactingsymbo| Va(:V11+ V,,) stands for horizontal Laplacian.
instabilities in the form of a twelve-mode dynamical systemThe houndary conditions at the idealizetdess-freeconduct-
derived from Boussinesq equations for thermal convection ifng flat surfaces imply=uv = ds0 3= d303=0 atxz=0,1.
Ordinary fluids. USing the mOdel, we show that the interac- We construct a dynamica| System by a standard Galerkin
tion between zigzag pattern and standing squares can alg@ocedure. The spatial dependence of vertical velocity, ver-
lead totwisted patchwork quilt pattern. Our model is based tical vorticity, and temperature field are expanded in a Fou-
on square lattice rather than hexagonal lattice, and it requiraser series, which is compatible with the stress-free flat con-
only two bifurcation parameters: the Prandtl numbeand  ducting boundaries and periodic square lattice in the
reduced Rayleigh numbar. The possibility of patchwork horizontal plane. We include minimum modes to describe
quilt patterns on square lattice due to interaction of a stationstraight stripesS), zigzag stripe$ZZ), square patternssQ),
ary and an oscillatory instabilities is qualitatively new. We and nonlinear interaction among these patterns. The vertical
then investigate numerically textures of spatiotemporal strucvelocity v 5, vertical vorticityw;, and 8 then may be written
tures arising due to interacting patterns. The model alsas
shows an interesting possibility of a multicritical poind (
=1.57£0.01,r=11.2-0.05), where stability zones of
straight stripes, zigzag stripes, standgygnmetrigpatchwork

&tw3=UV2w3+[(w'V)v3—(V-V)w3], (2)

wherev=(v4,v,,v3), ©=V XV = (0,,0,,w3), andd are,
respectively, the velocity, the vorticity, and the deviation

v3=[Wiygs(t)coskx; +Wpi4(t)coskeX,]sin X5

quilt, and standingwisted patchwork quilt meet. +[Wi1t)coskX, COSKXo
We consider an extended horizontal layer of Boussinesq _ ] _
fluid of thicknessd, kinematic viscosityr, thermal diffusi- + Wiz sinkexy sinkexp]sin 2xs, (4)

tivity « confined between two perfectly conductisgess-
free horizontal boundaries, and heated from below. Making
all length scales dimensionless by the fluid thickngstime
by the thermal diffusive time scat¥/ «, and the temperature + {114(t)coskexq cosKcX,, 5)

w3=[{101(t)COSK X1+ {p11(t) COSK X, | COSTX 3
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0=[0101(t)cOSKX; + O gy5(t)COSKeXo]SiN X3
+ O oA t)Sin 2X3+ [ O 11 t) cOSK X1 COSK X,
+ O775 Sink X4 Sink X, |sin 277X,

(6)

wherek.= 7/+/2. The horizontal components of velocity and

vorticity fields are computed by the solenoidal characters of

these two fielddi.e., V-v=V-w=0). We now project the
hydrodynamical Egs(1—3) onto these twelve modes to get
the following dynamical system

X vy +| 2 s+ % ) Gz)v 7
=a(—X+Y)+ + -
T U( ) x]_ 1 _Gl SZ G]_ 1 ( )
. X, G,
Y==-Y+(r—2Z)X+ X, T,+ G, Ty, (8)
6=—oc+ 21 o4 %2s 9
71G=—0 §—X182 G,V 9
3 X X,+G,G
_ 10 3 ﬂ)( 1X2+G1Gy)
78=— §0'S+ 3 oT— 3 , (10
ZO(XlGZ_XZGl)
1
. 10 Z(X1Y2+X2Yl)
== 3 TH+rs- NG
g(Yle_YzGl)
. 2
V=— gO’V-i- (X1Go+X5Gy), (12
. 8
TZ: - §Z+ (X1Y1+ X2Y2), (13)

where the critical modes
X=(Xy, Xp) "= (7l \/qu)(wlolr Woip) ",

Y=(Y1, Y2) " =(7k220) (O 101, 0107,

and

G=(Gy, Go)"=(7/\203) ({101, o) "

are proportional to vertical velocity, temperature, and
vertical vorticity, respectively. The nonlinear modes are
redefined as S=(S;, S,) "= (1/49.) (7/qcW112, Wita) T,
V=(7/29) {10, T=(T1, T2)" = (k2409 (/0O 112,
0112)", and Z=—(7k?/q%)@yy,. The constants of the
model areq?=7?+kZ and r=q_ 2. Prandtl numbewr and
the reduced Rayleigh number R/R.(=RK/qS) are two
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FIG. 1. Stability boundaries of various convective structures in
parameter space computed by the model. Stability zones of straight
stripes(9), zigzag stripegZZ), patchwork quilt(PQ), andtwisted
patchwork quilt (TPQ meet at a multicritical point ¢=1.57
+0.01,r =11.2+0.05). The model shows chaotic behavior at much
higher values of.

The model(7 — 13 describes various stationary, as well
as oscillating patterns, on square lattice. The set of straight
stripes (S) parallel to thex,,) axis is obtained by setting
Xz(l):Yz(l):Gj_:Gz:Sl:SZZTl:Tz:V:O in the
model. The stationary straight stripes givenXy2)=Y2)
=48(r—1)/3, andZ=r—1 appear just above onset (
=1) of convective instability. The stationary zigzdgZ)
patterns, which appear at secondary instability der 1.57,
are obtained by taking(z(l):Yz(l):Gj_(z):Sl(z)ZTl(z)
=0 in the model. The standing asymmetric squdfey is
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FIG. 2. Texture oftwisted patchwork quilt patterns. Isotherms

bifurcation parameters of our model. The superscrifte-
notes the transpose of a matrix.
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for c=1.57,r=11.4,z=0.25 at(a) t=0, (b) t=T/4, (c) t=T/2,
and(d) t=3T/4.
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% % =SS All of the straight stripes(S), zigzag stripesZZ), and
S =S s o> GO009© standing patchwork quiltPQ are unstable in the region of
=" - =~ - =/a/ia/ma  barameter space marked as twisted patwork ¢URQ. We
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. find all modes of the model active, if andr are chosen

(i) from this zone, and interacting with each other. We observe

FIG. 3. Temporal sequence of textures of structures due to Coms_patlotemporal patterns_ without mirror symmetry in this part
i, : . ; . . of parameter space. Figure 2 shows thésted patchwork

petition of standing mirror-symmetric andisted patchwork quilt uilt pattern sliahtlv above the multicritical point. These pat-

patterns fore=0.6,r=9.0,z=0.25 at(a) t=0, (b) t=T/8, (c) t q P gntly P : P

—T/a, (d) t=3T/8, (&) t=T/2, and(f) t=5T/8, (q) t=3T/4 (h) t terns haye lost the mirror symmetry. Thls happe_ns due to
—7T/8, (i) t=T. competition of asymmetric squares, which are mirror sym-

metric patchwork quilt pattern, with zigzag patterns. The
. . . generation of vertical vorticity breaks the mirror symmetry
retrieved by settings,=G,=S,=T,=V=0 in the model.  of patchwork quilt patterfPQ ase¢ andr are chosen from
The asymmetric squares, which form mirror-symmetriCthe zone marked TPQ in parameter spésee Fig. 1 An
patchwork quilt pattern, appear at the onset of secondanycrease in the intensity of vertical vorticity makes the pat-
instability via forward Hopf bifurcation fore>1.57. The tern more twisted. The set of four figures clearly depicts the
twelve-mode model describes interaction among these strugpatiotemporal behavior of the texture of thested patch-
tures. We integrate numerically the full model to investigatework quilt patterns. The texture depends stronglycoand
dynamics of the resulting convective structures. We do it forweakly onr. Figure 3 shows competition of two sets, mutu-
a fixedo by varyingr in small steps. For each valuenfthe  ally perpendicular to each other, competing with each other.
integration is done starting with randomly chosen initial con-The picture fore=0.6 andr=9.0 shows periodically vary-
ditions for long enough to reach the final state. Prandtl numing textures arising due to competing instabilities for one
ber o is then varied in small steps and whole procedure isperiod of oscillation. The model also shows quasiperiodic
repeated for eacls. The final states for various- andr patterns fore=0.835 andr =11.4(see Fig. 4 This chaotic
reported here are independent of the choice of initial condievolution of patterns occurs with further increase in
tions. In this paper, we have presented a simple model of inter-
Figure 1 shows the stability boundaries of various patterngcting instabilities. We have shown that the interaction be-
in parameter spaceo(—r plang computed from the model. tween a stationary instability and an oscillatory instability
A transition from straight stripe€S) to zigzag stripe$ZZ) may lead to many interesting patterns includihwisted
occur asr is raised above its value at the lower-stability patchwork quilt on square lattice. The texture of the patterns
boundary foro<1.57. The threshold value af for such  due to competing instabilities may be modeled with an ap-
transition strongly depends @n The transition from straight propriate dynamical system. The model is also useful in cap-

stripe to standing patchwork quilPQ) via forward Hopf turing the mechanism of the emergence of various instabili-
bifurcation occurs whem is raised above its value at the ties and resulting patterns.

lower boundary foro>1.57. The patchwork quilt pattern

shows mirror and inversion symmetries but not fourfold We acknowledge support from DST, India through its
symmetry. A shadowgraph of this pattern appears as standrants under the project “Pattern-forming Instabilities and
ing asymmetric squarg4.8]. The stability boundary of this Interface Waves.” N.G. of IIT, Bombay, acknowledges par-
Hopf bifurcation shows weak dependence®n tial support from PAMU, ISI, Calcutta.
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